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ABSTRACT 

In this thesis, an efficient algorithm based on the reproducing kernel Hilbert space (RKHS) 

method is presented for solving a class of differential equations. The RKHS method has been 

applied for obtaining the approximated solutions for a class of second order differential 

equations. Meanwhile, the reproducing kernel function and its conjugate operator have been 

employed for constructing the complete orthonormal basis in the space . The 

analytical and approximated solution are represented in the form of a convergent series with 

accurately computable structures in the space . The -th term approximation is 

proved to converge uniformly to the analytical solution. The main features of the RKHS 

method lie in that it can be directly applied for solving nonlinear problems without the need 

for unphysical restrictive assumptions, such as linearization, discretization, perturbation, or 

guessing the initial data. Further, the numerical comparison between the proposed method and 

the given exact solution is discussed by providing illustrated examples. The gained results 

reveal that the RKHS method is a systematic technique in obtaining accurate solutions for 

many nonlinear problems arising in natural sciences.  



Introduction 

 Second-order boundary value problems (BVPs) for ordinary differential equations are 

encountered very often in applied mathematics, physics and engineering such as atomic 

calculations, gas dynamics, and so on (Chandrasekhar, 1981; Soedel, 1993; Na, 1979; 

Dulacska, 1992). Recently, nonlinear second-order periodic BVPs, which consist of second-

order ordinary differential equations combined with periodic boundary conditions, have been 

vastly studied due to their broad range of application. (Atici and Guseinov, 2011; Li and 

Liang, 2005; Agarwal et al., 2006; Seda, 1992), But those BVPs do not always have solutions 

which can be obtained using analytical methods, and must be approached with various 

approximate and numerical methods. 

    The theory of reproducing kernel was put in use for the first time in the early 20th century 

as a solver for the BVPs of both harmonic and bi-harmonic functions. This theory has been 

effectively used as a base for constructing numerical solutions to applied sciences and various 

other important applications. (Saitoh, 1988; Daniel, 2003; Li and Cui, 2003). In the recent 

years, based on this theory, extensive work has been proposed and discussed for the numerical 

solutions of several integral and differential operators side by side with their theories. The 

researchers are generously asked to go through (Cui and Lin 2008; AL-Smadi, 2011; Geng, 

2009; Ye and Geng, 2009; Komashynska and Al-Smadi, 2014; Abu Arqub et al., 2012; Abu 

Arqub et al., 2015; Altawallbeh et al., 2013) in order to know more details about the RKHS 

method, including its modification and scientific applications, its characteristics and 

symmetric kernel functions, and others. 

     The advantages of the proposed method include: accuracy with minimal effort needed to 

achieve the results, possibility of picking any point in the interval of integration and the 

approximate solutions and their derivatives will be applicable, the method does not require 

discretization of the variables and is not affected by computation round off errors and it is of 

global nature in terms of the solutions obtained. 

     In this thesis, the analytical approximated solution has been investigated using the 

reproducing kernel Hilbert space (RKHS) method for BVPs of second-order with non-

classical conditions, and the analytic and approximate solutions are given in series form in the 

appropriate spaces. This thesis is arranged in the following order: In Chapter One, the basic 



mathematical concepts needed are introduced and 

spaces of interest is given. Chapter Two gives a brief introduction on RKHS preliminaries 

relevant to this study. In Chapter Three, RKHS technique are applied to develop a numerical 

method in the Hilbert Space  used for the acquisition of approximations of the 

solution and its derivatives for the general form of second order differential equations, in 

addition to numerical experiments and simulation results. This work ends in Chapter Four 

with some concluding remarks. 
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                                  Chapter One 

Preliminaries and Notations 

In this chapter, we will introduce the notations and symbols, which will be used in the 

remainder of our thesis and give a brief overview of the standard spaces of interest. 

The symbols  and  indicate the set of real and complex numbers, respectively. We will use 

 to denote either  or . The  component of a vector  is denoted by . The complex 

conjugate of a number  is , the absolute value is denoted by . Throughout the whole 

thesis, and {  refer to the orthogonal and orthonormal function system, 

respectively. The Greek letters,  and  refer to real numbers. The capital Latin letters   and 

 refer to RKHS and the letters ,  and  are always used for its reproducing kernel 

function. 

1.1 Basic Mathematical Concepts 

The function fields possess the following axioms (the Field Axioms) (Adamson, 2007), for 

all elements  . 

 Associative Laws: 

,

,

 

 Commutative Laws 

.

, 

 

 Identity Law 

.  

 Distributive  Law 

, 

.

 

 Inverse Law  

, when .  



Further, the notion of isomorphism is very commonly used in all areas of math. It is 

basically the mapping between two objects that maintains all the relevant properties of said 

objects.  and , we say that  is an isomorphism between  and  if  

is a function from  to and  obeys certain properties (Awodey, 2006): 

  

 Injective (one to one):  for all  ,   implies that . 

 

 Surjective (onto): for all there exists  such that  . 

 

  Preservation: essentially,  preserves operations. That is for example, 

 and . 

A vector space   is vector  addition and 

scalar multiplication, and is defined as closed under both operations and which in addition 

 the following axioms:  

1. ( . 

2.  

3. , for all  . 

      4.   for all  and . 

      5.    for all  and     

    6.  for all .       

      7. For each  exists a vector  such that  

 

Definition 1.1 A vector space  is called an inner product space if there is a mapping of 

 into a field  that satisfies the following properties:  

1) . 

2) . 

3) . 

4) with equality iff  

Remark 1.1 On
n
, we   



, where and 

Remark 1.2 On , we have the standard inner product which is  

 , where  and  

Remark 1.3 A vector space together with the inner product is called an inner product space. 

 

Definition 1.2 A normed space  is a vector space over a field  with a norm defined on it 

such that  :  satisfies the following: 

1) with equality iff . 

2) . 

3)   

Note that  

The following linking equations between the norm and inner product hold: 

 .     (Cauchy-Schwarz inequality) 

   (the parallelogram law) 

 

Remark 1.4 A vector space together with the norm function is called normed vector space. 

 

Definition 1.3 A sequence in a normed space  is said to be convergent if there exists 

 such that .  is called the limit of   and we write , 

simply, x . We say that (  converges to . 

 

Definition 1.4 A sequence in a normed space  is called a Cauchy sequence if  

, there is a positive real number  such that  

 

Remark 1.5 Every convergent sequence is Cauchy convergent, but Cauchy sequence is not 

always converge.  The space where every Cauchy converge is convergent to some point in the 

spaces is called complete space; complete normed vector space is called Banach space that is 

called a complete normed space. 

 



Definition 1.5 A Hilbert space  is an inner product space in which every Cauchy sequence 

in  converges to some element in , which is called a complete inner product space. 

 

Remark 1.6 The normed space  is called complete if every Cauchy sequence in  

converges: it has a limit in  . However, every Hilbert space is Banach space with respect to 

the norm . 

 

Definition 1.6 let  and  be vectors of an inner product space , if their product is zero, then 

they are orthogonal. . 

 

Definition 1.7 Let  be two normed spaces map  is called a linear operator if  

 

If  then  is called linear functional. 

 

Definition 1.8 Let  be two normed spaces and  be a linear operator. 

Then  is called  

 Bounded linear operator if  such that  the smallest 

value of  is called the operators norm and denoted by , and linear operator is 

called functional. 

 2 1 is called the adjoint operator for  where

2, in special case if  we say  is self-adjoint (symmetric) operator. 

  is called unitary (orthogonal) if  where  is the identity operator.            

Definition 1.9 Let  be any operator, not necessarily linear, where  

and  are two normed spaces, then the operator  is said to be continuous at  ,if 

for every  there is a  such that  for all   satisfying 

. 

Remark 1.7  is continuous if  is continuous at every . 

Definition 1.10 Let  be a linear operator, where  and  are normed 

space. Then, is continuous if and only if is bounded 



Definition 1.11 Let  be a bounded linear operator, where  and  are Hilbert 

spaces. Then, the Hilbert- adjoint operator  of  is the operator  such that for 

all  and ,  Whereas is self -adjoint if  . 

 

For example, three orthogonal functional   (Derezinski, 

2007): 

 Translation operator: For  

 , . 

 

 Modulation operator: For  

  by     

 

 Dilation operator: For , we define the dilation operator ,by 

. 

 

12 Let H is : X -empty set X. 

, the map , such that  is said to be the Dirac 

evaluation at .  

 

Evaluation functional is always linear: For  and or  , 

, and we say that  is bounded if There exists     such 

that . The delta function  has the property (Al-Smadi, 

2011): 

 

where the delta function  

            .                        

 



Theorem 1.1 (Riesz's Theorem) Every bounded linear functional  on a Hilbert space  can 

be represented in terms of the inner product, namely , where  depends on , is 

uniquely determined by  and has norm the . (There is a unique  such that  

. 

Definition 1.13 A function  is called absolutely continuous, if for every positive 

, there exists a positive  such that  with  

, then , where  disjoint. 

 

Definition 1.14 Let  be a domain in  where . The class of all measurable 

functions  defined on  for which  is denoted by , which is a 

Banach space with respect to the norms . 

 

1.2 Inner Product Spaces 

In the present subsection, we will review some spaces and their norms to understand the 

nature of spaces construction: 

                                                                                                                 

1. Lebesgue Spaces 

 We refer to , where 1 , as the linear space of  order Integrable 

functions on . In general, for a measurable set , and 1 , we say that , 

if 

 

1)  is measurable real valued function. 

2)  

 

It worth  here that  form a Banch space with respect to the norm 

  , we refer to   as the linear space of 

basically functions, where    if is measurable with  .   is a 


